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Abstract

Chemical waves in the cell cortex are crucial for polarization, migration,
and division. While several mathematical models based on reaction-diffusion
systems have been developed to explain different wave behaviors, current mod-
els typically generate only traveling or standing waves, but not both. We com-
putationally analyzed models by Mori et al. (2008) for standing waves and
Michaud et al. (2022) for traveling waves. We discovered that the Michaud
model can produce both standing and traveling wave behavior through param-
eter changes consistent with experimental observations, specifically by varying
the F-actin diffusion coefficient fromDF = 0.001 (traveling) toDF = 0.4 (stand-
ing). We also derived a simplified two-equation model based on the Michaud
framework that generates both wave types through the same parameter mech-
anism. These findings suggest that cells may regulate wave patterns through
biochemical control of diffusion rates.
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1 Introduction

Interactions between proteins in the cell cortex lead to the emergence of spatial
patterns that are vital for cell functions such as motility, division, and embryonic
development. Although the precise chemical mechanisms remain uncertain, several
mathematical models have been proposed to explain these patterns.

We consider the following three existing models:

• Gierer-Meinhardt: A two-equation reaction-diffusion model that produces
standing waves

• Mori et al.: A two-equation model designed to represent cell polarization that
produces standing waves
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• Michaud et al.: A three-equation model designed to represent cortical ex-
citability that produces traveling waves

Existing models have been designed to either produce standing waves or traveling
waves to mimic specific situations. However, experimental observations show that
standing waves and traveling waves can occur in the same cells. In this project, we
will pursue a unifying model guided by the following questions:

• Can a single model produce both traveling and standing waves through param-
eter changes that represent real biological processes?

• Can a two-equation model produce traveling waves? Can a three-equation
model produce standing waves?

In pursuit of these findings, we utilized several computational methods, two of
which were developed in-house. We utilized the Wave Analysis Pipeline, by Zac
Swider, to measure the periodicity of generated waves to determine if a model pro-
duced standing or traveling waves through its second order autocorrelation data. We
developed an optical flow analysis pipeline, utilizing OpenCV, to track wavefront and
asses wave speed. We programmed a wave front quantification pipeline, based on
established edge detection algorithms, to count the number of wavefront in a model.

We have identified standing waves produced by the Michaud model via changes
to the diffusion rate of F-actin. We explore the transition between standing and
traveling waves in the Michaud model through computational analysis.

We have also developed a simplified, two-equation system that maintains the
general behavior of the Michaud model and produces both standing and traveling
waves in a much smaller parameter space.

Furthermore, we performed various large parameter sweeps with in house analysis
pipeline to identify the role of the parameters α and k8 in the Michaud model and
illustrated their relation to the number of waves generated in the cell surface.

2 Existing Models

2.1 Gierer-Meinhardt Model for Reaction-Diffusion pattern
formation

While primarily known for his work in computer science, Alan Turing also made
lasting contributions to the field of biology with his 1952 paper “A Chemical Basis For
Morphogenesis.” Turing proposed that reaction-diffusion mechanisms could explain
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the spontaneous emergence of spatial patterns from homogeneous initial conditions.
Turing (1952) These “Turing patterns” have been used as a mathematical framework
for a wide range of biological phenomena from animal spots to limb generation.

Reaction-diffusion models rely on interactions between two chemical species: a
short-range activator that promotes its own production and a long-range inhibitor
that suppresses the activator. When the inhibitor diffuses significantly faster than
the activator, small random fluctuations can lead to stable spatial patterns through
a process known as diffusion-driven instability.

The general framework for a reaction-diffusion system is given by the following
system of partial differential equations:

∂a

∂t
= f1(a, h) +D∆a (1)

∂h

∂t
= f2(a, h) + δ∆h (2)

where a represents the concentration of the activator, h represents the concentration
of the inhibitor, f1 and f2 represent reaction functions between these chemicals, and
D and δ represent diffusion coefficients, multiplied by the spatial Laplacian for each
chemical, with D ≫ δ.

In 1972, the following reaction functions f1 and f2 were proposed for their ability
to create stripes and spots: Gierer and Meinhardt (1972)

f1(a, h) = c1 − c2a +
a2

h(1 +Ka2) (3)

f2(a, h) = a2 − h (4)

This model successfully generates stable spatial patterns through diffusion-driven
instability and has been widely applied to biological pattern formation. However, it
only produces static patterns rather than the dynamic traveling waves that are also
observed in cell cortices and lacks the specific protein interactions known to drive
cortical excitability.
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Figure 1: Spatial pattern resulting from computationally solving the Gierer-
Meinhardt equations, where black represents high concentration of the active form
a and orange represents low concentration of a.

2.2 Mori Model for robust cell Polarization

Cells have been observed to polarize robustly in response to transient stimuli.
This behavior is essential to functions such as cell motility. The following system of
equations has been proposed to model this behavior on a one-dimensional domain
representing the cell diameter. Mori et al. (2008)

∂u

∂t
= (b + γ un

1 + un )v − Iu +D
∂2u

∂x2
(5)

∂v

∂t
= −(b + γ un

1 + un )v + Iu +
∂2v

∂x2
(6)

where u represents the active species and v represents the inactive species with
diffusion coefficient D ≪ 1.

This system effectively creates stable polarization patterns in response to stimuli
and can exhibit some wave-like behavior. However, it is primarily designed for one-
dimensional domains and is not intended to capture the traveling wave dynamics
that experimentalists observe in cell cortices.
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2.3 Michaud Model for Cortical Excitability

Certain cells have been observed to form dynamical patterns of traveling wave
fronts in response to random, symmetry-breaking external stimuli. This phenomenon
is known as cortical excitability, and its occurrence impacts the outcomes of devel-
oping embryos. The following three-species system was proposed to model cortical
excitability based on experimental observations of frog and starfish oocytes. The
proposed chemicals involved are active and inactive forms of proteins called Rho-
GTPases as well as F-actin, which provides indirect negative feedback on active Rho
through the reaction function R(RT,RD,F ). Michaud et al. (2022)

∂RT

∂t
= R(RT,RD,F ) +DRT∇2RT (7)

∂RD

∂t
= k5 − k6RD −R(RT,RD,F ) +DRD∇2RD (8)

∂F

∂t
= k7 + k8

RT 2

1 + k9RT 2
− k10dWF +DF∇2F (9)

with reaction function

R(RT,RD,F ) = (k0 + α
k1RT 3

1 + k2RT 2
)RD − (k3 + k4(1 + β)F )RT (10)

where RT represents active Rho-GTPase, RD represents inactive Rho-GTPase, F
represents F-actin concentration, and dW represents a spatially correlated Gaussian
noise field applied to F-actin degradation to model stochastic external processes
and stimulate wave formation. The system exhibits excitable dynamics where small
perturbations can trigger large-amplitude waves that propagate across the cortex.

These equations provide a good model for traveling wave behavior in the cell
cortex; however, the original paper makes no reference to the production of standing
waves by the model, and it relies on a stochastic noise term, dW , which makes it
difficult to analyze.

3 Model Development

3.1 Mass Conservation Assumption

We simplified the Michaud model by imposing a mass-conservation constraint on
the Rho-GTPase species, assuming that the total concentration of active and inactive
GTPase is spatially and temporally constant:
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Figure 2: Snapshot of traveling waves produced by numerically solving the Michaud
et al. model. The domain represents a small section of the cell cortex and the
colormap represents the concentration of active Rho-GTPase (RT ).

RT (x, t) +RD(x, t) = C (11)

where C is a constant representing the total concentration of GTPase at every
point. This assumption is biologically reasonable since Rho-GTPases cycle between
active and inactive forms without net production or degradation on the timescales
of wave dynamics. Substituting RD = C − RT into the original system yields a
two-equation model:

∂RT

∂t
= (k0 + α

k1RT 3

1 + k2RT 2
)(C −RT ) − (k3 + k4(1 + β)F )RT +DRT∆RT (12)

∂F

∂t
= k7 + k8

RT 2

1 + k9RT 2
− k10dWF +DF∆F (13)

3.2 Simplification of Terms

We further simplified each reaction term while preserving the essential biological
relationships between chemical species:
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∂RT

∂t
= k0RT 2(1 −RT ) − k1RTF +DRT∆RT (14)

∂F

∂t
= k2RT − k3F +DF∆F (15)

The first term, k0RT 2(1 − RT ), captures autocatalytic activation of RT at low
concentrations, with saturation when the concentration approaches 1. This polyno-
mial form approximates the sigmoidal behavior of the Hill functions in the original
model. The inhibition term, −k1RTF represents depletion of RT based on local
concentrations of both RT and F , consistent with the original model.

The F-actin equation gives production of F tied linearly to the concentration
of RT , which closely approximates the Hill function behavior in the original model
within our parameter range of interest. Depletion of F is linear with respect to local
concentration, consistent with the original model.

3.3 Removal of Stochastic Noise

The Michaud model includes a stochastic noise term dW in the F-actin equation
to initiate wave formation from homogeneous initial conditions. While this term is
necessary for symmetry-breaking, it complicates the mathematical analysis of the
system and creates unpredictable wave patterns.

We found that applying spatially correlated noise for the first 100 seconds, then
removing it, is sufficient to generate stable, propagating wave patterns. This ap-
proach produces waves that propagate from fixed central points rather than appear-
ing at random, making wave-speed analysis and mathematical analysis of the system
simpler without ongoing stochastic interference.

4 Numerical Methods

4.1 Finite Difference Method

Finite Difference Method refers to the approximation of the derivative and the
double derivative for computations on a finite discrete domain.

∂u2

∂2x
≈ u(x − h) − 2u(x) + u(x + h)

h2
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The extension of this method to two dimensions, namely the Laplacian, follows as

∆u = ∂u
2

∂2x
+∂u

2

∂2y
≈ u(x − h, y) − 2u(x, y) + u(x + h, y)

h2
+u(x, y − h) − 2u(x, y) + u(x, y + h)

h2

Assuming a matrix represents the 2D domain of the intended system, a minimal shift
in the x, and y coordinates, namely ”±h”, matches with the notion of moving to the
adjacent cell.

∆u ≈ u(xi−1, yi) − 2u(xi, yi) + u(xi+1, yi)
h2

+ u(xi, yi−1) − 2u(xi, yi) + u(xi, yi+1)
h2

∆u ≈ u(xi−1, yi) + u(xi+1, yi) − 4u(xi, yi) + u(xi, yi−1) + u(xi, yi+1)
h2

The following matrix shows an alternative way to write this equation.

⎡⎢⎢⎢⎢⎢⎣

0 1 0
1 −4 1
0 1 0

⎤⎥⎥⎥⎥⎥⎦
It serves as a future segue to mention that this matrix’s convolution over a picture
serves as an elementary edge detection algorithm as the second derivative of edges
where the gradient is the highest yield larger values and inner-features with lower
gradient are set to 0.

4.2 Wave Analysis Pipeline

The Wave analysis pipeline provides a method to measure the periodicity of waves
in a given model. The model first simplifies the matrix through a averaging groups
of cells into one. Within the new matrix, cells values over time are tracked and
recorded. Then, the second order autocorrelation of the time versus amplitude data
yields the period of the signal.

4.3 Optical Flow Pipeline

Optical flow pipeline utilizes an edge detection algorithm based on the Laplacian
of the system to find the strongest 6 wave fronts, based on the magnitude of the
Laplacian. It assigns the wavefront a marker, which stores its position, and every
frame checks in its vicinity to find the new position and stores the positions in a list.
The pixels traveled per frame yields the velocity. The nuance of the process stems
from
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• Ensuring the markers are far apart to not track the same wavefront

• The small back and forth oscillations of a standing wave marker do not register
as wave speed

• Ensuring that the markers track only one wave

• When a wave dissipates, the marker does not simply become a standing duck,
pulling the average wave speed down significantly for the rest of its lifetime

As a result, the optical flow pipeline is optimized for various parameter ranges in-
volving the density of waves, and also only pulls every 3rd or 4th position data to
average out the small oscillatory observations on the standing waves. A final account
of the initial and final position provide further clarity to the state of the waves.

The figure below shows the markers assigned to points on the Optical Flow
Pipeline.

(a) Standing wave at t = 60 (b) Standing wave at t = 360

Figure 3: Optical Flow Pipeline on standing wave with Michaud Model at DF = 0.5
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(a) Standing wave at t = 60 (b) Standing wave at t = 185

Figure 4: Optical Flow Pipeline on traveling wave, Michaud Model at DF = 0.001

4.4 Wave Quantification Pipeline

The Wave Quantification Pipeline first utilizes a gaussian blurring filter to remove
noise from the simulation. Then, it applies the canny edge detection algorithm to
isolate the wavefront. A separate algorithm then cuts down the thickness of the
wavefront to single pixel thick to severe two waves which are different but touching
each other. Finally, the smallest features are eliminated and the larger features are
counted, yielding the number of waves.
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Figure 5: Post Processing view of wave fronts

5 Linear Stability and Bifurcation Analysis

In our project, we study pattern formation in systems of partial differential equa-
tions. In particular, we want to find traveling/standing waves (instability) that arise
from small perturbations from a spatially uniform and time independent state in our
biological system. Our primary sources on linear stability and bifurcation analysis
are Logan (2015), Johnson (n.d.), van Voorn (n.d.). We will then try to replicate
results from Hughes et al. (2024), a paper on a simplified F-actin and GTPase model
inspired by Mori et al. (2008) and Holmes et al. (2012).

5.1 Linear Stability Analysis

For a partial differential equation, we define a corresponding homogeneous
steady-state solution (HSS) u to be a function that satisfies the PDE and bound-
ary conditions along with two properties:

• time independence (steady-state):
du

dt
= 0;

• and spatial uniformity (homogeneity):
du

dx
= 0;
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where variables x and t denote space and time respectively.

Given a set of HSS to a differential equation, we want to understand whether
solution is linearly stable. Informally, a sufficiently small perturbations to a linearly
stable solution will die out. Formally, perform the following procedure to determine
the stability of a HSS u:

• First write a perturbation trial form (otherwise known as an Ansatz in Ger-
man): u(x, t) = u+ εϕ(x, t) where u is the HSS, ε < 1 and ϕ(x, t) is the pertur-
bation function.

• We substitute this trial form into our original partial differential equation, dis-
carding O(ε2) terms (linearization) to obtain a linear PDE for the perturbation
ϕ:

∂ϕ

∂t
= Lϕ

where L is a linear operator.

• Finally, we verify spectral stability of the HSS u. To do this, we assume a
modal solution of the form ϕ(x, t) = eσtψ(x) where σ ∈ C and ψ(x) satisfies the
same boundary conditions as ϕ. Substituting this expression into the linearized
PDE yields an eigenvalue problem for the operator L:

σψ(x) = Lψ(x).

We will now determine the spectrum of L denoted by σ(L), which is defined
as

σ(L) = {λ ∈ C ∶ L − λI is not invertible}.

Notice that in a finite dimensional space, this set is simply the set of eigenvalues
of the matrix. While this can be done analytically, this project primarily
uses numerical approximation of the eigenvalues: we discretize L, assemble a
converted matrix L, then we compute eig(L). Furthermore, the eigenfunctions
associated with each eigenvalue will be called spatial modes.

Obtaining the collection of eigenvalues σn of L, we define the following cases:

– if Re(σn) < 0 for all n, then every spatial mode decays exponentially and
u is linearly stable.

13



– if Re(σn) > 0 for some n, then the corresponding spatial mode grows and
u is linearly unstable.

– if for some eigenvalue Re(σn0) = 0 and no eigenvalue has positive real
component, we obtain a candidate bifurcation point.

We will postpone the discussion of bifurcations until a later section.

Using an exercise solved from Logan (2015) to illustrate, consider the system of
reaction diffusion equations on the spatial domain 0 < x < L given by

ut = αuxx + f(u, v)
vt = βvxx + g(u, v)

with no-flux boundary conditions ux = vx = 0 at x = 0 and x = L. Let u and v be
steady-state solutions; functions that satisfy the PDE while being time independent
(e.g. ut = 0). Note that a property of steady-state solutions is f(u, v) = 0.

We start by writing the perturbation equation. Let u(x, t) = u + U(x, t) and
v(x, t) = u + V (x, t).

Then we taylor expand about u and v and drop the higher order terms:

f(u, v) = f(u +U, v + V )
= f(u, v) + fu(u, v)U + fv(u, v)V + . . .
= fu(u, v)U + fv(u, v)V + . . .

g(u, v) = g(u +U, v + V )
= gu(u, v)U + gv(u, v)V + . . .

Now let ut = αuxx + f(u, v) and vt = βvxx + g(u, v). Substitution into the original
differential equation gives us

Ut = αUxx + fu(u, v)U + fv(u, v)V,
Vt = βVxx + gu(u, v)U + gv(u, v)V.

Now we rearrange the problem into matrix form. Let

W⃗ = [U(x, t)
V (x, t)] ,D = [

α 0
0 β

] (α,β > 0), J = [fu(u, v) fv(u, v)
gu(u, v) gv(u, v)

] .

.
The differential equation is then W⃗t =DW⃗xx + JW⃗ .
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We will approach this problem by separation of variables: assume W⃗ (x, t) = C⃗ =
T (t)X(x) for constant vector C⃗. Substitution into the original PDE gives us the
eigenvalue problem T ′(t) = σT (t) for σ = −λ. Solving the Sturm-Liouville problem

X ′′(x) + λX(x) = 0 for X ′(0) =X ′(L) = 0,

we obtain a modal solution

W⃗n(x, t) = C⃗eσnt cos(nπx
L
) (n = 0,1,2, . . . ).

We will now set up the eigenvalue problem for the linear operator as referenced
before. For notational simplicity, let ϕn(x) = cos(nπxL ). By substituting our modal
solution into the vector equation, we find that

σnC⃗e
σntϕn =D(−

n2π2

L2
C⃗eσntϕn) + JC⃗eσntϕn

⇒ (σnI +
n2π2

L2
D − J)C⃗ = 0.

Recall that (σnI+ n2π2

L2 D−J)C⃗ = 0 has a non-zero solution if and only if det(A) = 0
for A = (σnI+ n2π2

L2 D−J). We will stop here before numerically solving for eigenvalues.

5.2 Bifurcation Analysis

To analyze the evolution of HSS given different parameters (constants) of a PDE
or system of PDEs, we may plot the HSS values along a single parameter to produce
1 dimensional bifurcation diagram.

More precisely, given a system of differential equations (PDEs or ODEs),

du

dt
= F (u,λ),

where u ∈ Rn is the state variable and λ ∈ R is the bifurcation parameter, the
bifurcation diagram plots the solutions u(λ) which satisfy F (u∗, λ) = 0, the steady
state solutions, as a function of λ.

Within a bifurcation diagram, a bifurcation point λc is where the qualitative
set of solutions changes. At such a point, the following behavior may occur:

• the number of solutions may change,

• the solution’s linear stability changes sign,

15



• or a new invariant set (not an HSS) appears (e.g. limit cycles).

A branch of the bifurcation diagram is defined as a connected smooth curve (or
surface in multivariable cases) of solutions plotted against parameter λ; note when
the number of solutions change, the ”splitting point” is singular, and indicates a new
branch. Different branches correspond to different families of solutions.

We would like to now introduce some special bifurcation points that occur in
a model discussed in a later section. Recall our definitions of linear stability and
discussion of eigenvalues in the previous section.

A Hopf Bifurcation point λc occurs when a complex-conjugate pair of eigen-
values of the linearized system crosses the imaginary axis as λ crosses the critical λc.
For λ < λc, the equilibrium is stable; for λ < λc, the equilibrium is unstable and a
limit cycle (periodic orbit) is formed.

In PDEs or lattices, the linearized operator depends on a wave number k, the
spatial frequency of a Fourier mode. Recall that the dispersion relation σ(k, λ) gives
the growth rate for each mode.

A finite wave-number Hopf bifurcation point, sometimes known as a wave/oscillatory
Turing instability arises when critical eigenvalues cross the imaginary axis first at
a non-zero wave number kc ≠ 0. This produces traveling or standing wave patterns
with spatial period 2π/kc that oscillate in time.

A homogeneous Hopf bifurcation point occurs when the zero wave number
mode is critical. Every point in space oscillates in phase and no new structures
appears onset.

We will also introduce a new instability. A long-wave length instability oc-
curs when modes with small wave number grows. This instability results in phase
separation instead of temporal oscillation when then system is perturbed.

5.3 Hughes Model

Recall the Mori ”Wave-Pinning” model mentioned in an earlier section. This
paper spawned many similar models, one of which is proposed by Hughes et al.
(2024), which uses simply polynomial dependencies while maintaining conservation
of mass. This polynomial model is given as

∂u

∂t
= (b + γu)v − (1 + sF + u2)u +D∂

2u

∂x2
,

∂v

∂t
= −(b + γu2)v + (1 + sF + u2)u + ∂

2v

∂x2
,

∂F

∂t
= θ(p0 + p1u − F ) +DF

∂2F

∂x2
.
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We will also note that this polynomial model is ”relatively” simpler to perform sta-
bility and bifurcation analysis compared to the Michaud and Mori models according
to Hughes et al. (2024). We thus started here to understand linear stability and
bifurcation analysis.

This system operates on a 1D domain and can be used with either periodic or
Neumann boundary conditions, given respectively as

Q(0, t) = Q(L, t) and ∂xQ(0, t) = ∂xQ(L, t) = 0

where Q(x, t) = (u, v,F )T . Furthermore, the system has mass conservation be-
tween the u, v, given as

M = 1

L ∫
L

0
[u(x, t) + v(x, t)]dx

where M is a constant real number.
To find the homogeneous steady states of the system, we set each time and space

derivative to zero, obtaining the system of equations

0 = (b + γu2)v − (1 − sF + u2)u,
0 = θ(p0 + p1u − F ),
0 = u + v −M.

We note from Hughes et al. (2024) that the 3rd equation comes from mass con-
servation. Solving this system, we find that v =M − u, F = p0 + p1u, and u is a root
of the polynomial

ν(u) = (b + γu2)(M − u) − (1 − s(p0 + p1u) + u2)u.

Most numerical continuation software start from an HSS and apply a variety of
algorithms to calculate bifuraction points and branches of diagrams.

Figure 6: Table of constants from Hughes et al. (2024).
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We would like to replicate the following bifurcation diagram plotting the HSS of
F against the parameter s with M = 2 and b = bc ≈ 0.067 from Hughes et al. (2024).

Figure 7: One-parameter bifurcation diagram plotting F against s from Hughes et al.
(2024).

Note that from left to right, the blue point is a finite wave number Hopf, the
red point is a LW instability onset, and the green point is a homogeneous Hopf
bifurcation.

5.4 Numerical Continuation via BifurcationKit.jl

This project used the Julia programming language BifurcationKit package to nu-
merically generate bifurcation diagrams and compute Hopf points. Unfortunately,
the script for the numerical calculation of Hopf points and automatic bifurcation
diagram for the Hughes model was incomplete by the end of the REU. The im-
plementation encountered convergence errors from Newton iteration solvers, likely
stemming from choice of HSS; note that choices for b and s are on a continuum, and
changes the steady states.

In this section, we’ll illustrate the capacity of the Julia package using a simpler
reaction-diffusion system.

Let the Brusselator system in 1 dimension be defined as

∂X

∂t
= D1

l2
∂2X

∂z2
+X2Y − (β + 1)X + α

∂Y

∂t
= D2

l2
∂2Y

∂z2
+ βX −X2Y
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with Dirichlet boundary conditions

X(t,0) =X(t,1) = α
Y (t,0) = Y (t,1) = β/α.

By setting the time and space derivatives, we find an HSS X = α,Y = β/α. Further-
more, let the inital conditions be α = 2, β = 5.45,D1 = 0.008,D2 = 0.004.

Discretizing the PDE system and using BifurcationKit, we generate the following
bifurcation diagram plotting X against the variable l.

Figure 8: One-parameter bifurcation diagram plotting X against l.

The following figure outputs the location of Hopf points. For convenience, the
software found Hopf points at approximately l ≈ 0.5,1.0,1.5. From left to right, the
points are Homogeneous Hopf, finite wave-number Hopf, and another higher order
finite wave number Hopf. For 0.5 ≤ l < 1.0, we expect harmonic behavior with small
deviations from equilibrium. From 1.0 ≤ l < 1.5, we expect single standing wave
behavior. For l > 1.5, we expect two notes and a travelling wave pattern.

Figure 9: Calculated Hopf values.

The following figures are solutions to the Brusselator that exhibit the predicted
behavior.
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Figure 10: Brusseltor values for l = 0.6.

Figure 11: Brusseltor values for l = 1.2.
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Figure 12: Brusseltor values for l = 1.7.

6 Results

6.1 Generation of Standing Waves in the Michaud Model

The model proposed in Michaud et al. consists of 3 nonlinear partial differential
equations. Within its studied parameter range, it generates traveling waves. Our
targeted parameter sweep revealed stable solutions that yield stationary waves.

Furthermore, our work under-covered the existence of stable transitionary states,
where stationary waves transition to traveling waves. These breakthroughs brings
the Michaud et al. model a step closer to the biological observations where both
traveling and stationary waves occur simultaneously.

Our parameter sweep reveals that the diffusion coefficient of F-actin, DF , serves
as the deciding factor to between traveling and standing waves.

The figure below displays 12 time stamps from Michaud et al. model with its
default parameters. It produces traveling waves as advertised.
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Figure 13: Snapshots of Michaud et al. model with default parameters, generating
traveling waves

The figure below displays 12 time stamps from Michaud et al. model with default
parameters with the exception of the diffusion coefficient of F-actin (DF ). It settles
into discrete non-moving pockets of high and low RT concentration.
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Figure 14: Michaud et al. model with DF = 0.6

The transition state occurs where 0.05 < DF < 0.3. We utilized the optical flow
pipeline to derive the median wave speed for various values of DF . The figure below
shows the variation of wave speed with respect to DF .
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Figure 15: Mean velocity of waves in Michaud et al. model as a function of F-actin
Diffusion Coefficient

This graph raises further questions about the relationship between the diffusion
coefficent and wave speed. While the overall reduction of wave speed is evident as
DF reduces, an odd number of values take place where 0 < DF < 0.04, where the
wave speed increases. A similar observation takes place where 0.25 < DF < 0.3 and
0.45 < DF < 0.5, but at a much smaller magnitude. For a more superficial look at
the overall trend, the removal of the first 20 values shows strong coherence to an
exponential decay of form y = Ae−Bx +C

Figure 16: Wave speed as a function of DF with the curve of best fit

The fit reveals parameters A = 0.0175 ± 0.0002,B = 8.4397 ± 0.1738, C = 0.0023 ±
0.0001. The existence of the bumps suggest that a lower amplitude oscillation com-
ponent to our current finding.

Another potential culprit for the unexpected behavior lies in the variability of
the wave speed for the first 20 values. A high variability shows that further tuning
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and adjustment of the model could yield values more in line with the expected. The
figure below shows the median speed, the 75 percentile, and the 25th percentile of
the measured wave speeds.

Figure 17: Median wave speed as a function of DF with the 75th and 25th percentile
included

The second order autocorrelation data presents an other method to confirm the
wave behavior. We utilize the wave analysis pipeline to generate the following sum-
mary tables.

Figure 18: Summary data of standing wave with DF = 0.4
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The autocorrelation data shows the periodicity over time, and the central peak,
representing the lack of it shows that the pockets of higher concentration settle into
sections and stop changing with time. The width of the graph, presumably, comes
from the developmental stage where the wave is still settling down.

The figure below shows the same data for the traveling wave with DF = 0.1.

Figure 19: Summary data of standing wave with DF = 0.1

A major significance of this result lays in the potential reproducibility of these
results within a real world system, meaning the observed set of parameters are a
subset of the physically possible and tunable parameters.

6.2 Wave Number in Michaud Model

As much as the formation of the waves, the number and density of the waves
both matter. It had been proposed that the chemicals corresponding to k8 and α in
Michaud et al. model play a relevant role in controlling the number of the waves in
the system.

We confirmed this through our in-house edge detection algorithm. The figure
below shows how many waves were generated for the given values of α and k8.
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Figure 20: Median wave-count heatmap for range of α and k8

The absence of waves, seen at the top edge, and the top left corner of the heatmap
represents systems where wave formation failed. The figure below shows a snapshot
of this at time= 500s for α = 0.25 and k8 = 0.703
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Figure 21: Snapshot of system at t=500 for α = 0.25 and k8 = 0.703

The figure below represents the system with the highest number of wavefront and
system with the default parameters.

(a) Snapshot of system at t=500 for α =
1.5 and k8 = 0.14

(b) Snapshot of system at t=500 for α =
1.0 and k8 = 0.14

Figure 22: Snapshots of Michaud model with different parameters showcasing their
effect on number of wavefront

These figures yield an intuitive confirmation to the data obtained from the wave
number pipeline. Furthermore, as tunable parameters in the biological model, it
opens an area of exploration.
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6.3 Simplified Model Wave Behaviors

The simplified model introduced in Section 3 generates standing and traveling
wave behavior similar to that of the Michaud model; however, the parameter space
is significantly smaller, the terms are simpler, and the two-equation system enables
more straightforward mathematical analysis.

A key advantage of the simplified model is the removal of the stochastic noise
term, which allows us to generate traveling wave patterns that propagate from a
steady central point rather than appearing randomly due to noise, making wave
analysis more straightforward.

(a) Traveling waves (DF = 0.1) (b) Standing waves (DF = 1)

Figure 23: Snapshots of different wave behaviors from the simplified model, taken at
time t = 1000s. (a) Traveling waves emerge with a low F-actin diffusion coefficient
(DF = 0.1). (b) Steady spatial patterns form when the F-actin diffusion coefficient
is higher (DF = 1). The colormap represents concentration of active Rho-GTPase
(RT ) over a 2-dimensional spatial domain.

The simplified model exhibits the same fundamental wave transition behavior as
the Michaud model, with traveling waves occurring at low DF values and standing
waves emerging at higher DF values.

This model maintains key biological mechanisms such as autocatalytic activation
of Rho-GTPase and indirect inhibition by F-actin. Collaboration with experimen-
talists could validate the model’s application to real cortical systems.

Next steps include applying the analysis pipelines used on the Michaud model to
our simplified model and conducting linear stability analysis on the system.
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7 Discussion

7.1 Key Findings and Biological Significance

Our computational analysis revealed that the Michaud model can produce both
standing and traveling waves through changes to the F-actin diffusion coefficient, DF .
The transition occurs where 0.05 < DF < 0.3, with traveling waves at low diffusion
(DF = 0.001) and standing waves at high diffusion (DF = 0.4).

This finding suggests that cells could regulate wave patterns by controlling F-
actin diffusion rates, providing a mechanism for switching between different cortical
behaviors. The ability to produce both wave types within a single model aligns with
experimental observations where cells exhibit both behaviors depending on context.

Our computational analysis also established a relation between the parameters α,
k8 and the wave number. Our findings show that variation from the default values
of the model for k8 and α tend to reduce the wave quantity, with the exception of
increasing α by 50% while keeping k8 the same, or increasing α by 100% with or
without increasing k8 by 50%.

7.2 Future Directions

Several promising directions emerge from this work:

• Experimental validation of F-actin diffusion thresholds in real cell systems

• Linear stability analysis of both the Michaud model and simplified model to
understand the mathematical basis for wave transitions

• Application of the computational pipelines used on the Michaud model to the
simplified model

• Collaboration with experimentalists to test model predictions about wave con-
trol mechanisms
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